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Flow patterns of large eddies in a wake 
and in a boundary layer 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 15 August 1978) 

The turbulent velocity fluctuations at eight positions on sections of a plane wake and 
a boundary layer have been sampled simultaneously and recorded in digital form on 
magnetic tape for subsequent numerical analysis. Two configurations have been used 
(lines of equally-spaced sensors in planes normal to the flow, and arrays with three 
rows) with sensors responsive both to streamwise and cross-stream components of the 
fluctuations. To the extent that the Taylor approximation of ‘frozen’ flow is valid, 
the recorded fluctuations may be interpreted as instantaneous values at  grid points in 
the volume swept out by the array. 

The records have been examined, (a) to find evidence for flow patterns with marked 
periodicity in one direction, and ( b )  to select dimensions and orientations for simple 
eddy flow patterns whose random superposition would lead to correlation functions 
with a close resemblance to those calculated from the recorded data. In  the wake, 
clear evidence was found for periodic flow patterns that resemble the eddies of a von 
Kkm&n street, but, although the spacing of eddy centres in each group was uniform, 
it varied considerably from one group to another, suggesting that groups are being 
observed in different stages of development. 

Two kinds of correlation were calculated from the records, (i) simple mean values of 
velocity products, and (ii) mean values of the products weighted by the total intensity 
or Reynolds stress in the effective volume swept by the array of sensors. For both kinds, 
the correlations are well described by simple inclined roller-type eddies, but the 
correspondence is greatly improved by weighting in favour of intensity or Reynolds 
stress. It appears that the eddies contributing most to intensity or Reynolds stress are 
less variable in form than all the eddies together, and that those contributing most to 
Reynolds stress are significantly qifferent in shape and in orientation from those con- 
tributing most to turbulent energy. 

1. Introduction 
Comparison of correlation functions measured in a wide variety of nearly uni- 

directional, turbulent shear flows shows that the larger-scale motions that, contribute 
most to turbulent kinetic energy and Reynolds stress have much the same forms in all 
flows, the principal differences being attributable to ‘special ’ eddies peculiar to 
individual flows (Townsend 1970). Examples of special eddies are the entrainment 
eddies in wakes (Grant 1958; Keffer 1965), the transverse or ring vortices in mixing- 
layers (Bradshaw, Ferriss & Johnson 1964; Brown & Roshko 1974; Davies & Pule 
1975; among others), arrays of longitudinal vortices in wall flow (Gupta, Laufer & 
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Kaplan 1971), and, in a sense, the overlapping velocity fields of the attached eddies in 
equilibrium wall layers. Nevertheless, the general similarity is such that the principal 
differences in mean flow behaviour of the various free turbulent flows, for example, the 
variation of entrainment constant, can be explained by supposing a basic structural 
similarity of the turbulent motion. 

Most successful schemes for prediction of the development and properties of nearly 
unidirectional flows are designed to provide an adequate description of the turbulent 
intensities, stresses and scales as well as the mean flow properties, but they leave open 
the actual form of the velocity patterns (‘eddies’) that are responsible for these 
quantities. The approach is acceptable if the patterns are broadly similar in all flows, 
but once the velocity gradients of the mean flow depart appreciably from simple 
shearing the similarity is lost and the ratios of the stresses to turbulent intensity are 
changed. In  effect, an eddy shape parameter, nearly invariant in unidirectional flows, 
becomes a variable in complex flows and a prediction scheme for these flows should be 
able to describe in outline the changes of the shape parameter. 

The experimental work to be described develops methods for the identification of 
eddy structures in two unidirectional flows, particularly the structures contributing 
most to turbulent stresses, turbulent energy and entrainment, using arrays of hot-wire 
anemometers. Similar measurements in curved and divergent flows would provide a 
testing-ground for schemes that set out to predict changes of eddy structure as well as 
the stress ratios. 

2. Experimental arrangements 
The plane turbulent wakes were produced behind circular cylinders of diameter 

9-53 mm in air-streams of velocity around 12 m s-l, giving cylinder Reynolds numbers 
in the region of 8000, and all the measurements were made at  170 diameters from the 
cylinder where the distributions of turbulent intensities have become nearly self- 
preserving in form. 

The boundary layer was formed on the floor of a wind-tunnel of square section with 
sides of 0-45 m. Transition was encouraged by a trip-rod of square section with side 
3 m m ,  placed across the floor at  the entrance to the working section. The Reynolds 
number based on distance from the trip-rod was nearly 1.3 x 106, and the total layer 
thickness was about 40 mm. Background ‘turbulence’ was about 0-2 yo, mostly in the 
form of slight surging with mean frequency about 8 Hz. 

Turbulent velocity fluctuations were detected by constant-temperature hot-wire 
anemometers whose outputs were amplified, sampled simultaneously at  intervals of 
1*024ms, and recorded on magnetic tape in digital form for subsequent numerical 
analysis by the Cambridge University IBM 370 computer. The anemometer amplifiers 
are direct-coupled and their frequency responses are effectively flat from zero 
frequency to well beyond the maximum significant for the sampling interval used. 
Most of the records were over a period of 16.4s (i.e. 16K readings for each channel), 
but some longer records were taken to test the internal consistency of the mean values. 
The data was recorded in the form of eight-bit binary numbers, and the finite discrimi- 
nation of the conversion would cause over-estimation of variances by + bit2. Typical 
variances were in excess of 500 and statistical uncertainties are far greater than the 
systematic error. 
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The hot-wire sensors were of Wollaston wire, 26pm in diameter and approximately 
1 mm long over the etched section, and they were used with two orientations to the 
flow, normal to the mean flow direction and a t  45” to it. The eight sensors were 
arranged either in a single line or in three parallel lines with two sensors in each outer 
row and four in the central row. Assuming the validity of the Taylor approximation of 
‘frozen ’ flow patterns, the time intervals between successive sample groups corre- 
spond with spatial intervals of about 11 mm, and a block of N consecutive groups 
provides in effect simultaneous values of the velocity fluctuation at  8N separate 
positions within a volume of length ( N  - 1)  x 11 mm and cross-section equal to the 
profile area of the sensor array. 

3. Periodic eddy patterns in a cylinder wake 
Although photographs of wakes with flow boundaries made visible by injection of 

dye or smoke show that groups of transverse eddies with axes parallel to the generating 
cylinder are prominent in the entrainment of ambient fluid (Grant 1958; Keffer 1965), 
the power spectra show no sign of a peak at  the characteristic frequeiicy of eddy 
passage. A possible reason, suggested by the observations of Gupta et al. (1971) in a 
boundary layer, is that the ‘characteristic frequency’ is variable, and, although eddies 
in individual groups may be almost regularly spaced, the spacing varies considerably 
from one group to the next. 

If regularly spaced groups of eddies are present in the flow, it should be possible to 
obtain significantly good fits of the observed velocity patterns with a model velocity 
distribution of the expected characteristics. The visualization studies seem to show 
that the motion in the groups is nearly confined to the XOZ plane (Ox is in the direction 
of mean flow and Oz in the direction of shear), and is generally similar to an array of 
spanwise vortices with velocity distribution given by 

u,(x, z )  = f’(z) sinkx, 

wo(x, 2 )  = - kf ( 2 )  cos kx, 

where k is the wavenumber of variation in the flow direction. The best fit of such a 
velocity pattern to a recorded block of velocity fluctuations, u(x ,  z ) ,  is Au,(x, z )  where 

A = 2 U ( X ,  Z) u,(x, ~ ) / 2  U; (3.2) 

and the sum is taken over all the virtual positions of the sensors in the block. From 
examination of the photographs, it appeared that identifiable groups contained 
between three and five eddies and so a search was made for patterns that are finite 
groups covering four complete periods in the Ox direction. No reason to change the 
number developed during the analysis of the records. 

Physically, each pattern corresponds to the passage of an organized group of eddies 
actively engaged in the process of entrainment, and each group must occupy its own 
region of the flow. If the selectivity of the fitting process is sufficient to discriminate 
between patterns of different periods, they will cause significantly large values of A at 
widely separated intervals as patterns of the selected period happen to go by. The main 
turbulent motion will also contribute to A but that contribution is likely to be normally 
distributed. Consequently, the probability distribution function for A will be non- 
Gaussian with values of the kurtosis significantly greater than the normal value of 
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three, the excess reflecting the intensity of organized eddy groups of the aelected 
period. 

To represent a single row of simple eddies, I have used 

f (z )  = sech[k(z-z,)], (3.3) 

where zo is the distance of the eddy centres from the central plane of the wake. For a 
double row that resembles a K&m&n eddy street, I use 

(3.4) 

These forms are chosen to give zero vorticity, i.e. potential flow, far from the eddy 
centres. 

The convariances, R,,(O, 0, r )  = u(x ,  y, 2) u(x,  y, z + r ) ,  shown in figure 1 have been 
calculated from one set of recorded fluctuations and they are seen to be everywhere 
positive, unlike the covariances that would arise from an assembly of eddy groups 
with either of the distribution functions (3.3) or (3.4). The lateral distribution of the 
longitudinal intensity, 2, is consistent in shape and magnitude with results obtained 
using single sensors (Townsend 1949), indicating that the presence of the array causes 
little interference with the flow. 

For convenience of calculation, the records were analysed by selecting a value for 
the wavenumber k and then calculating the variance and kurtosis of the coefficient A 
for various values of the centre displacement z,. Typical variations of the variance, 
A2, and the kurtosis, A4/(A2)2, are shown in figure 2, and it will be seen that the 
kurtosis has a well-defined maximum for kz, in the range 1.2-1.6 while the variance 
takes a minimum value for a slightly larger value of kz,. The reason for the minimum 
of the variance is that the main turbulent motion seems to be composed of simple 
eddies with instantaneous distributions of velocity of the same sign at  all the sensors 
(figure 1). Since the velocity patterns are of the form, uo = f ’ ( z )  sin kx, they weight 
the sum of equation (3.2) both positively and negatively for sensor positions in the 
region of large intensity and can discriminate against fluctuation patterns that give 
velocity fluctuations of the same sign at  all the sensors. To a considerable extent, 
the minimum variance depends on rejection of the contribution to A from the main 
turbulent motion when the sum of the values off’(z) at  the sensor positions is zero. 

That a significant component of the velocity field is composed of non-overlapping 
groups of eddies is shown by records of the sum, 

f ( z )  = sech [ k ( z -  zO)] + sech [k(z + z,)]. 

- _ _  

in effect the coefficient A for an eddy patt,ern with a single member (figure 3). By using 
only one period rather than four, the selectivity of the numerical filter is so low that 
aperiodic components, e.g. from the main motion, cannot generate periodic transients 
in the record. Almost the whole of the record consists of regular groups of three to five 
oscillations, confirming the initial choice of four, and each group is fairly uniform in 
period although that period varies considerably from one group to the next. Notice 
that only a small fraction of the record consists of irregular oscillations of the kind 
that would be produced by overlap or superposition of groups of different periods or 
by the comparatively simple eddy structures of the main motion. Such records offer 
clear evidence that non-overlapping eddy groups exist in the flow with a range of 
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FIGURE 1. Correlation functions measured in the wake, (a) transverse component R,,(O, 0, r ;  Z) ; 
( b )  longitudinal component Rll(r, 0, 0; 2 ) .  (Units of R,, are lO-*V.) x ,z = - 1.7; 0 ,  z = 21.3; 
0, 2 = 41.0; A, z = 60-3. 

periods and with lateral distributions of velocity similar to those leading to maximum 
kurtosis of A .  

Simple eddy groups with velocity distributions of the form (3.1) do not contribute 
to the Reynolds stress and cannot exchange energy with the mean flow. A distribution 
that can exchange energy is defined by 

uo(x, z )  = f’(z) sin kx + g’(z) coskx, 

wO(x, Z) = - kf ( z )  cos kx + kg(z) sin kx, 
for which the mean value of the product uo wo over a period is 

Velocity distributions consistent with the basic concept of simple groups of eddies are 
provided by 

- 
UOU’O = iMf’g-fg’). (3.71 

f ( z )  = sech k ( z -  zo) + sech k(z  + zo),  

g (z )  = a[sinh k(z - zo) sech2 k(z  - zo) - sinh k(z  + zo) sech2 k(z  + zO)] ,  
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FIGURE 2. Kurtosis p4 and variance of the pattern coefficient A a8 functions of eddy centre 
displacement at constant wave-number. (a) Period 10 ms, k = 0.174 mm-l; ( b )  period 12 ms, 
k = 0.145 mm-l. 

and then 
- 
uowo = - +ak[sech4 k(z  - zo) - sech4 k(z  + zo) + 2 sech k(z  - zo) sech3 k(z  + xo)  

- 2 sech3 k(z  - zo) sech k(z  + zO)] 

giving maximum stress near the line of eddy centres. 
Using these distribution functions for the calculation of A ,  the criterion of maximum 

kurtosis can be used to find optimum values of the displacement zo and the stress 
coefficient a for a particular value of the wavenumber. Figure 4 shows the dependence 
upon wavenumber of (a )  the stress coefficient, ( b )  the variance of the convolution 
quantity A ,  the maximum value of the kurtosis of A ,  and ( d )  kzo, defining the average 
distance of the eddy centres from the central plane of the wake. Since eddy groups of 
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FIGURE 3. Time records of the fluctuation sum 8, defined by equation (3.5), for a range of 
central wavenumber. The numbers below each record specify the period in milliseconds used 
to form the sum S of equation (3.5).  

a particular wavenumber are moderately rare events, the scatter in the values of a for 
maximum kurtosis is considerable, but there is a discernible trend for values to 
become more negative for larger values of kz,. It appears that the sign of the energy 
transfer from the mean flow to the periodic eddies may reverse at  a wavenumber near 
130 m-l. 

If contributions from the main motion are small, the variance A2 is a measure of the 
contribution to 2 by eddy groups whose wavenumbers lie within a range of about 
25 yo around the selected wavenumber, and figure 4 ( b )  shows that smaller eddies of 
larger wavenumber have more energy than larger ones. The results are in agreement 
with the view that eddies of wavenumber greaker than 130 m-1 belong to ‘old’ groups 
generated far upstream and are being observed near the end of their growth cycle with 
zero or negative growth rate. Eddy groups of smaller wavenumber are in the early 
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stages of growth and have less energy. They are receiying energy from the mean flow 
and, since they began to develop when the wa,ke width was almost the current size, 
their centres are further from the central plane. 

It is not easy to say how much energy resides in the motion of the eddy groups, but, 
on the basis that the maximum local contribution to 2 from an eddy group with 
coefficient A is A2/8, the fraction of the total turbulent energy is estimated as between 
15 and 20%. 

Streamlines of a single eddy of a group are shown in figure 5 for a stress coefficient 
of 0.1. 

4. Long eddies in a boundary layer 
The persistent lateral variations of surface stress and mean velocity that have been 

found in boundary layers (for example, Bradshaw 1965; Fernholtz 1964) probably 
arise from long roller eddies with axes aligned with the mean flow. The location of the 
long eddies depends on details of the upstream flow, but it is so difficult to remove the 
variations that it appears likely that a large-scale flow instability is present, the 
upstream disturbance acting as the trigger for growth. A possible mechanism of the 
instability (Townsend 1976) involves the changes in the normal Reynolds stresses 
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FIGURE 4. Parameters of the periodic eddies of the wake for various wavenumbers: (a) Stress 
coefficient a ;  (b)  variance z; (c )  kurtosis Pa; (d )  centre displacement kz,. 
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FIGURE 5. Streamlines of & periodic array of eddies with velocities given by equation (3.8) for 
kz, = 1.4 and a = 0.1, (a) for the eddy motion alone, and (b )  combined with an error-law 
distribution of mean velocity and moving with the free stream. 
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caused by the motion, and it indicates that the flow is unstable to the development of 
arrays of roller eddies with wavenumbers of lateral periodicity covering a moderate 
range. If the instability exists, it is likely that periodic groups of roller eddies occur 
transiently with similar centre spacings. Since each group depends for its energy 
supply on its organized structure, only one can be present in any particular place and 
their presence may be detected by techniques analogous to those used for the periodic 
eddies of the wake. 

An attempt has been made to find evidence of groups of longitudinal roller eddies, 
using records from linear arrays of eight sensors in a line parallel to the surface and at 
right-angles to the mean flow. Numerical results have been obtained by calculating the 
Fourier coefficients, 

where un(t) is the fluctuation recorded by the nth sensor a t  sample time t ,  + r7, (T, is the 
interval between samples). The procedure is equivalent to obtaining the best fit to a 
velocity pattern, u,,(z, y) = exp (ii&y), limited to a range in z of NUT,. Calculations of 
the variance of C, CC*, and of its kurtosis, p4 = (CC*)Z/(CC*)z, are displayed in 
figure 6. 

If non-overlapping, laterally periodic groups of long eddies are present, large values 
of CC* will occur when a group with the selected wavenumber and with length 
comparable with NUT, is within the sampled volume. If the length of the eddies is 
large compared with the sample length, their contributions to C will be proportional 
to the sample length and the contributions to its variance proportional to its square. 
If their length is much smaller than the sample length, each eddy group contributes 
a constant amount and the variance is proportional to the sample length. 

The definition of kurtosis of C is that appropriate to a complex random variable, 
and the normal value for a Gaussian distribution is two not three. Writing 

-- 

C(t )  = ~ ( t )  +ib ( t )  
where a and b are real, we have 

CC* = a2 + b2, (CC*)2 = a4 + b4 + 2a2b2. 

If a and b are statistically independent and normally distributed, 

{a2) = {b2) ,  {a2b2) = (a2}(bz), (a4) = 3(a2)2, 

and so p4 = ((CC*)2)/((CC*))2 = 2. (4.2) 

Since the Fourier transform of equation (4.1) is based on just eight data values, 
the spectral resolution is far from good, but two ranges of wavenumber can be 
distinguished : 

(a)  For wavenumbers near 0.24mm-1, the kurtosis is above the normal value of 
two, and the variance is roughly proportional to N ,  the number of samples, for N 
greater than eight. The behaviour of the variance indicates that eddies with these 
values of the transverse wavenumber have effective lengths in the flow direction of 
roughly 80 mm. 

( b )  Both the variance and the kurtosis take maximum values for wavenumbers in 
the range 0.10-0.14 mm-1 (dependent to some extent on the sample number), and the 
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F~QURE 6. Evidence for long roller eddies in the boundary layer from statistics of the amplitudes 
of the Fourier coefficients of time-averaged fluctuations : (a) kurtosis, (b )  variance, as functions 
of the transversewavenumber. . , N = 4 ;  A , N = 8 ;  O , N = 1 6 ;  x , N = 3 2 ' .  

variation of the variance with sample number indicates effective lengths of order 
200 mm. 

The central wavenumber for the first group agrees well with the position of the first 
minimum of the transverse correlation function R,,(O, r ,  0) (figure l), and the high 
value of the kurtosis may mean that the main turbulent eddies are discrete, non- 
overlapping structures with considerable variation in lateral scale. 

The second group of longer eddies, whose lateral scale is somewhat greater than the 
layer thickness, may be the long eddies generated by the postulated flow instability, 
but the sensor positions are too few and too closely spaced to decide whether they 
occur as quasi-periodic groups or merely in pairs. 

Visual confirmation of the interpretation may be found in figure 7, which shows a 
sequence of simultaneous velocity profiles in the Oy direction. The vertical separation 
of the profiles is such that the diagram may be regarded as a plot of the velocity 
fluctuations in the xOy plane. An example of a long eddy pattern with a lateral wave- 
length of around six sensor separations is to be found in the left-hand column of 
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FIauRE 7.  Instantaneous transverse profiles of streamwise fluctuations in the boundary layer at  
z = 22.6 mm. The time interval between sucoessive profiles is 1-024 ms, equivalent t o  11 mm 
displacement in the direction of flow. 
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profiles, extending from profile number 9 to profile number 26 with minor lateral 
displacements of the maxima and minima and occasional obscuring by small-scale 
motions. An example of an eddy of the main motion, i.e. the first group, occurs in the 
second column from the left from profile number 36 to profile number 41. 

5. The fitting of simple and weighted correlations by superposition of 
simple velocity patterns 

If velocity patterns in the flow change very little as they sweep past the array of 
sensors, successive groups of sampled outputs are nearly simultaneous values of the 
fluctuations at  positions displaced in the stream direction by the product of U, the 
mean velocity, and r,, the time interval between samples. That is to say, the fluctua- 
tion velocities recorded by the sensor a t  position x at times t + nr, are very nearly the 
fluctuations at  time f for the series of positions x - Unr,. 

The availability of effectively simultaneous values for velocity fluctuations at  many 
positions in the flow means that the velocity products used in the calculation of the 
correlation function R(r,x) can be weighted in favour of special flow conditions 
within a considerable volume of the flow. The ordinary correlation function is calcu- 
lated from the record as 

where vn(x) is the velocity fluctuation at  (effective) position x for the nth sampling, 
while a weighted correlation is 

N N 

&(r,x) = C vn(x)vn(x+r)W, X wn, (5.2) 
n- 1 /n=l 

where Wn may depend on the fluctuations at all the data points used for velocity 
products in the nth sample. 

If all the sensors are responding to the same component of the velocity fluctuation, 
an obvious weighting factor is 

w, = z v w ,  (5.3) 
all I 

the sum of the squares of the fluctuations at  all the data points in the sampled volume, 
and it favours the eddy structures that contribute most to total intensity of the 
component within the volume. If the sensors respond to different components of the 
velocity fluctuation, more elaborate weighting schemes are possible. A useful con- 
figuration is a three-row array with sensor wires at  45" to the mean flow and orientated 
to be sensitive alternately to (u + w )  and to  (u' - w'). If two neighbouring sensors are 
responding to (u + w) and to (u' - w'), the difference of their squares is 

(u + w)2 - (u' - w')2 E 2uw + 2u'w' (5.4) 

and the sum of the differences for all pairs of points within the sampled volume is 
determined mostly by the contribution to the Reynolds shear stress from it. 

In addition, by forming the quantities, 

(u + w ) ~  + (u' - w ' ) ~  and (u + w) (u' - w'), 
and summing over the volume, weighting factors are found that favour sampled 
volumes that contribute most to the turbulent intensities, .u'i and 2. 
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Most of the following results have been obtained from sample volumes containing 
64 data points from eight equally spaced sample groups. Both the ordinary and 
weighted correlations have been calculated for the 2080 values of the sensor separation, 
and the results have been compared with correlation functions, P(r; x), that would 
be found if the turbulence were entirely a superposition of eddies of simple form. 
A measure of the resemblance between a correlation function calculated from the data 
and one for an assembly of model eddies is provided by the matching coefficient, 

Z P(r; x) Q(r; x) B(r;  x) 
[X FaB x X Q2B]i ’ J =  

where the sum is over all the sensor separations, and B is an additional weighting 
factor that may be used to favour velocity products for particular separations. 

The procedure is to vary each parameter of the model eddy in rotation to produce a 
maximum value of the matching coefficient, continuing until no further increase can 
be obtained. If the entire turbulent motion were the superposition of randomly distri- 
buted model eddies, the final value of the coefficient would be one and the parameters 
would be those of the flow eddies. The degree of mismatch is to be measured by the 
difference of the coefficient from one. 

Some likely causes of a mismatch are: 
(i) The contribution to the correlation function from small, quasi-isotropic eddies 

of the dissipation chain. 
(ii) Use of a model flow pattern that has very little in common with the turbulent 

flow. 
(iii) A two-component structure of the main turbulent motion, e.g. entrainment 

eddies and double rollers in a wake. 
(iv) Occurrence of a cycle of eddy growth and decay with substantially different 

flow patterns at  different stages in the cycle. 
Of these, the contribution from smaller eddies can be reduced by setting the 
weighting factor B less for small separations than for larger ones, the presence of two 
distinct kinds of eddy only complicates the problem by introducing more eddy para- 
meters, while the flow patterns at a particular stage of a growth-decay cycle could be 
determined if a weighting factor could be devised specific to that stage. The weighting 
factors mentioned above may be regarded as aimed at discriminating between the 
stages with maximum Reynolds stress and maximum turbulent intensities. 

6. Velocity patterns in the turbulent wake 
The form of the velocity correlation function in many free turbulent flows suggests 

that the main motion may be composed of an assembly of inclined, double-roller eddies, 
with velocity distributions similar to that of the ‘model’ eddy, 

(6.1) 1 u = ( 1  -P2y2) exp - t(a2x2 +p2y2 + y2z2 + 26xz), 
v = y( (a2 + us) x + (uy2 + 6) z )  exp - $(a2x2 + p2y2 + y2z2 + ZSxz), 
w = uu. 

The model eddy may be described as a pair of oppositely rotating roller eddies 
with axes inclined to the flow direction at an angle of 8 = +arctan (ZS/(a2-y2)) 
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and occupying a region similar in shape to but rather larger than the reference 
ellipsoid, 

012x2 + p”2 + y2z2 + 28x2 = I.  (6.2) 

It is generally similar to the eddy sketched by Townsend (1976, p. 1203: 

the reference ellipsoid, a,, pS, y8 and 8, related to a, p, y and 6 by 
The nature of the eddy is more easily appreciated if it is specified by parameters of 

012 = a: cos2 8 + 7; sin2 8,) 

R22(r; z )  = 1 - 3P2r;) [C2(z2 - 4.;) 
- &-2A2( 1 - ia2(r1 + - frC./lr3(~1 +Br3)] x E,  

R12(r; z )  = r2(P - ip2r i )  [C(z- 4r3) - A (rl + By3)] x E 
= R21(-r; z) ,  

R&; 4 = R31(r; 2) = aR,,(r; 4, 

I P = P*, 
y2 = X; sin2 8 + 7: cos2 8, 
6 = (a: - 7:) sin 8 cos 8, 

> (6.4) 
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(a)  u-sensors linear arrays 

File Array Weight 

2 02 N 
W 

6 OY N 
(2  = 0) W 

N 
W 

9 OY 
(2  = 20mm) 

12 OY N 
( z  = 40mm) W 

48 02 N 
(Central) W 

52 OY N 
(2  = 0) W 

Mean values N 
W 

( b )  (u + w) -sensors linear arrays 

U 

28 
23 
26 
24 
33 
30 
36 
32 
28 
24 
36 
32 

31 
27 

a, 

23 
20 
26 
26 
27 
23 
38 
32 
28 
24 
38 
32 

33 
28 

P 

- 
21 
20 
27 
26 
28 
26 
- 
- 
33 
24 

25 
24 

Y S  

47 
43 
26 
9 

55 
55 
30 
30 
46 
44 
25 
30 

41 
39 

File Array Weight u uS p ys 

39 OY N 39 40 23 37 
W 34 40 22 24 

41 OY N 35 42 28 55 
( z  = 20mm) W 33 36 27 55 

(2  = 0) 

0 

0.40 
0.30 
(0-45) 
(0.45) 
(0.40) 
(0.40) 
(0-50) 
(0.50) 

0.05 
(0.50) 
(0.50) 

0.30 
0.30 

- 0.05 

e 
(0.70) 
(0.70) 
(0.40) 
(0.40) 

ZO 

20 
20 
20 
20 
30 
25 
20 
20 
14 
10 
- 

17 
15 

J 

0.930 
0.956 
0.952 
0.966 
0-936 
0.950 
0.910 
0.924 
0.928 
0.957 
0.921 
0.943 

J 

0.915 
0.929 
0.910 
0.921 

(c)  (u +v)-sensors linear arrays 

File Array Weight u u, /3 yS 0 a 20 J 

24 Oy N 46 63 22 40 1-10 1-15 20 0.918 
(2  = 0) W 45 62 21 40 1-10 1.15 20 0.923 

27 oy N 43 30 36 62 0.60 0.80 25 0.922 
(z = 20mm) W 38 27 34 55 0.60 0.80 25 0.932 

(d) 2 : 4 : 2 arrays 

File Sensors Weight u u, p yI 8 a ZO J 

1.11 U N 38 37 33 57 0.20 
W 32 32 54 20 0.20 

1.13 (u+w)  N 54 57 32 42 0.50 
W 46 50 31 37 0.65 

1.16 (u+w) N 53 57 32 42 0.55 
W 44 49 33 35 0.65 

1.19 (u+w)  N 52 52 35 42 0.20 
W 45 45 33 39 0.25 

(0.80) 
(0.80) 
(0.80) 
(0.80) 
(0-80) 
(0.80) 
(0.80) 
(0.80) 

20 0.922 
20 0.934 
20 0.905 
25 0.920 
20 0.924 
20 0.937 
25 0.934 
25 0.948 

(i) Entries omitted or in parentheses indicate that the sensor array does not discriminate 

(ii) Effectively, Oy linear arrays can give information only concerning the parameters u and b, 

(iii) Units of u, u8, /3 and y, are m-1. 

between values of the parameter. 

not u,, ya and 0 individually. 

TABLE 1. Eddy parameters for the wake. 
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- 

Sensors Weight u a, P YI e zollo 

21 N 0.84 0.89 0.67 1.11 
W 0.73 0.76 0.65 1.05 

(u + w) N 1.00 1.08 0.69 1.24 
W 0.90 1-03 0.66 1.07 

(u + v) N 1.20 - 0.78 - 
w 1.22 - 0.74 - 

(21 + w) N 1.43 1.49 0.89 1-13 
2:4:2 array W 1.21 1.30 0.87 1.00 

0.40 - 0.63 
0.30 - 0-56 

(0.40) - - 
(0.40) - - 

0.98 - 
- 0.98 - 

0.42 - 0.93 
0.52 - 0.93 

- 

The reference length is I ,  = 27 mm, the standard deviation' of the mean velocity distribution. 

TABLE 2. Non-dimensional parameters for the wake. 

By using the scale width of the mean velocity distribution, I,,, defined to give the best 
fit between the distribution of mean velocity defect with 

U, - U = u,, exp - &z2/1; (6.5) 

the parameters may be expressed in non-dimensional form. The values given in table 2 
are averages for broadly similar arrays of sensors. 

Some direct evidence for the occurrence of eddy patterns of the double-roller type 
may be found in figure 8 which shows a series of instantaneous profiles of velocity 
fluctuation, obtained from a line of eight sensors in the Oy direction, responding to the 
Ox component of the velocity. Successive profiles are plotted a t  vertical intervals that 
represent the mean flow displacement over a sample interval on the same scale as the 
positions of the sensors. Patterns similar to those expected from the model eddies of 
equation (6.1) are frequent, persisting for about six samples-equivalent to a distance 
of about 70 mm - and broadly consistent with the eddy parameters found by the pro- 
cess of matching correlations (compare figure 9). 

7. Velocity patterns in a boundary layer 
For boundary layers, the model eddy of equation (6.1) does not satisfy the wall 

condition that the normal component of velocity should be zero there, and it should be 
replaced by one with a velocity distribution such as 

v = y(1- (a2+a6)xz- (ay2+6)z2)exp - ~ ( " 2 ~ 2 + P 2 ~ 2 + y 2 2 2 + 2 S ~ ~ ) ,  
u = z( 1 - p2y2) exp - *(ax2 + Py2 + y2z2 + 26xz), 

w = au. 
(7.1) i 

This 'attached' eddy extends from the wall to a distance of order (y2 - 62/a2)-t, and it 
has a roughly ellipsoidal shape with principal axes in the Oy direction and a t  angles 8 
and (8 + in) to the flow direction, where 

tan 28 = 2S/(a2-y2). ( 7 4  

In  boundary layers and other wall flows, attached eddies of different sizes are to be 
found and the effects of the variation in size become important near the wall. Further, 
turbulence composed of eddies of a single simple kind would have a distribution of 
Reynolds stress of the form 9 e x p  ( - Cz2),  very different from the real distribution 

18-2 
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V = 
FIGURE 8. Instantaneous transverse profiles of streamwise fluctuations in the wake for 
z = 20 mm. The time interval between successive profiles is 1.024 ma, equivalent to 11 mm 
displaoement in the direction of flow. 
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which is roughly of the form exp ( - Cz2). It is more realistic to postulate that the whole 
motion of the layer resembles that of an ensemble of eddies of the form (7.1), with 
centres randomly distributed in the xOy plane and with size parameters of all values 
from small ones that refer to the largest eddies to small ones that refer to attached 
eddies comparable in size with the thickness of the viscous layer. For simplicity, the 
ratios of the parameters, a, B, y and 8, are kept the same for all the model eddies, and 
the size distribution is chosen so that the calculated distribution of Reynolds stress 
for the model flow becomes 

RI3(O; z)  = constant x exp - (y2- 6 2 / a 2 )  22, (7.3) 
where a, y, S are values for the largest of the attached eddies. 

In  the model flow, motion in the outer layer is determined almost entirely by the 
largest of the component eddies (7.1), while the motion in the inner layer depends on 
eddies of all sizes from those comparable with distance from the wall to the largest 
eddies of the 00w. Within the inner layer, large eddies of scale comparable with the 
00w width contribute only to the u and v fluctuations and play no role in the transport 
of momentum or turbulent energy dissipation, i.e. they have no influence on the local 
similarity. In terms of the two-layer description, the outer layer is distinguished by a 
limited range of eddy size in contrast to the inner layer containing eddies with a wide 
range of sizes (Townsend 1976, chap. 5). 

Using the size distribution that leads to the error-law distribution of Reynolds 
stress, the components of the correlation function may be calculated. They are 

where Qo = $(a2+ + B2r; + Y ~ T ;  + 28rlr3) + (72-  &'/a') 22, 

L = - C(Z2 + $3) + fa-2A2(22 - I T : )  + &Ar3(r, + BY3), 
M = C2(z2 - 2~: )~  - $A2(r1 + (22 - $3) + iACr3(r1 + Br3) (z2 - $T:), 

A = a2+a8, B = 8/&, C = a(y2-82/a2), 

N = C ( Z - ~ ~ Y ~ ) ~ + & ~ ( T ~ + B T ~ )  ( z - 4 ~ ~ ) .  

The calculated correlations have a single scale factor. The intensities and Reynolds 
stresses should be multiples of the correlation components for r = 0, i.e. 

1 exp - [ (y2 - J2/a2) z2], R1,(0; 2) = - 3 Bt 
4 y2- S 2 / a 2  

R22(O;  2 )  = S W ( y 2  - S2/a2)* z )  + ($a-2A2- C)/(y2- 62/a2) exp - [(yz- ~ / a 2 )  221, 

R33(O; 4 = a2Rll(o; 4, 
R,,(O; 2 )  = aR,,(O; 2). 

(7.5) 
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(a) u sensom 

File h a y  

3 QY 

5 OY 

7 OY 

(z = 29.0mm) 

(z = 22.6 mm) 

(z = 16.2 mm) 

(b)  (u+w) sensors 

File Array 

13 CkY 

15 CkY 

19 OY 

(z = 29.0mm) 

(z = 22.6 mm) 

(2 = 9.9mm) 
41 2:4:2 

(c )  (u+w) sensors 

File Array 

25 OY 
( z  = 22.6mm) 

29 2:4:2 

53 2:4:2 

(d) (u+w) sensors 

File Array 

44 2:4:2 

46 2:4:2 

01, 

68 
64 
58 
48 
52 
46 

01, 

106 
88 
98 
78 
56 
50 
30 
32 

01, 

56 
44 
22 
24 
20 
20 

01, 

88 
42 
66 
48 
52 
41 
44 
44 

188 

78 
76 
70 
62 
68 
64 

B 
82 
62 
92 
76 
82 
74 
86 
84 

B 
66 
52 
58 
58 
54 
54 

P 
90 
80 
96 
78 
90 
94 
96 
81 

Y 8  

74 
72 
34 
28 
42 
38 

Y 8  

30 
18 
46 
32 
74 
60 

116 
134 

YS 
26 
18 

180 
156 
172 
160 

Y8 

84 
78 
80 
86 
97 

103 
106 
115 

~ 

e 
0.2 
0.2 
0 
0.2 
0.2 
0.2 

e 
0.28 
0.50 
0.02 
0.04 
0.30 
0.26 
0.28 
0.32 

e 
- 
- 

0.45 
0.40 
0.40 
0.40 

8 
0.65 
0.20 
0.20 
0.25 
0.35 
0.35 
0.35 
0.35 

TABLE 3. Eddy parameters for the boundary layer. 

a 

- 
- 
- 
- 
- 
- 

a 
- 
- 
- 
- 
- 
- 
- 
- 

a 

- 
- 

- 0.40 
- 0.40 
- 0.55 
- 0.55 

a 

0.20 
- 0.65 
- 0.20 
- 0.20 
- 0.20 
- 0.65 
- 0.20 
- 0.15 

J 

0.842 
0.845 
0.898 
0.907 
0-926 
0.929 

J 

0.821 
0.850 
0.875 
0.894 
0.928 
0.931 
0.862 
0.874 

J 

0.840 
0.855 
0.890 
0.878 
0.877 
0.858 

J 

0.890 
0.943 
0.912 
0-912 
0.855 
0.924 
0.862 
0.869 

In table 3, optimum values of the eddy parameters and the corresponding coefficients 
of fit are listed for various weightings and sensor cofigurations. Unlike the results for 
the wake, the coefficients of fit are much the same for all the records from the linear 
arrays, whether the correlations are weighted or unweighted, and the more interesting 
results are from three-row, 2:4:2 arrays with the sensors responding alternately to 
(u + w) and to (u - w). For these records, the eddy parameters for correlations weighted 
for uw are considerably different from those for correlations either unweighted or 
weighted for u2 or w2, and the coefficients of fit ( J )  are larger. The largest differences 
are in the parameter a, defining the plane of circulation in the model eddy. 
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The results are consistent with the view that the eddies go through a cycle of 
growth, decay and renewal that correspond with the bursts and sweeps described in 
the literature. Since the eddy forms are different at  the various stages of the cycle, the 
larger coefficient of fit for weighting with Reynolds stress implies more uniformity of 
the eddies contributing to the stress, i.e. stress-producing flow is present for a com- 
paratively short time during each cycle. This is consistent with the ' intermittency ' 
of positive values of the velocity product, - uw, reported by several authors. 

8. Discussion 
The object of the experimental programme has been to identify coherent, organized 

eddy structures in turbulent shear flows by the analysis of recordedvelocity fluctuations 
a t  points distributed over a substantial volume of the flow. There have been many 
studies made of organized eddies, particularly in boundary layers and jets using 
visualization and conditioned sampling techniques, and they have two characteristic 
features : (i) they are mutually exclusive to the extent that the flow fields of different 
eddies do not overlap appreciably, and (ii) they are not constant in form but go through 
a cycle of growth, decay and renewal. Since the flow fields do not overlap, the spatial 
distribution of the eddy centres cannot be random and, even if a sufficient knowledge 
of the correlation function were available, the eigenfunction method of Lumley (1965) 
is not strictly applicable. In addition, the variation of form over the growth-decay- 
renewal cycle means that any structure inferred from the correlation function is a 
blurred superposition of the various structures assumed by the eddy during the cycle. 

The common feature of the methods used here to identify organized eddies may be 
described as conditional sampling with the condition referring to velocity fluctuations 
within a substantial volume of the flow rather than at  or near a point. For the quasi- 
periodic entrainment eddies of the wake, the complexity of the velocity pattern leads 
to fairly accurate determination of its characteristics but it is less easy to obtain 
details of the main eddies of wakes and boundary layers. Although the correlations 
have been fitted with double-roller eddies, the present method is hardly able to 
distinguish between single and double rollers, and the significant parameters are the 
coefficients describing the spatial extent of the ,eddy and the plane of circulation. 
A next step is to match velocity patterns in the flow to a model eddy with parameters 
found by correlation matching and then, whenever the coefficient of fit is satisfactorily 
large to record both the actual pattern within the volume of fit and the pattern in the 
surrounding fluid. By using this form of conditional sampling. it is possible both to 
amend the model eddy to make it a better match to real velocity patterns and to 
discover the spatial relations and forms of neighbouring eddies. Work on these lines 
is now in progress. 

On the whole, the results support the view that large-scale velocity patterns of the 
main turbulence are fairly simple but that time-averaging makes them appear more 
complex because of the superposition of patterns from eddies at  all stages of the 
growth-decay-renewal cycle. Both for the wake and for the boundary layer, a good 
representation depends on using model eddies which extend across the whole flow (in 
the case of the wake, one-half of the flow). The good description of the wake by eddies 
of a single size with centres at  a fixed distance from the central plane implies strong 
interactions between the whole of one side of the flow. For a realistic treatment of 



Flow patterns of large eddies 537 

unbounded shear flows, it seems preferable to avoid the use of ‘local’ equations for the 
turbulent Reynolds stresses with diffusion and ‘scrambling ’ terms and to replace them 
with ones relating to the overall structure. Whether such an approach is practicable 
for purposes of prediction remains to be seen. 
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